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Full-Wave Analysis of Microstrip Open-End
and Gap Discontinuities

ROBERT W. JACKSON, MEMBER, IEEE, AND DAVID M. POZAR, MEMBER, IEEE

Abstract — A solution is presented for the characteristics of microstrip
open-end and gap discontinuities on an infinite dielectric substrate. The
exact Green’s function of the grounded dielectric slab is used in a moment
method procedure, so surface waves as well as space-wave radiation are
included. The electric currents on the line are expanded in terms of
fongitudinal subsectional piecewise sinusoidal modes near the discontinuity,
with entire domain traveling-wave modes used to represent incident, re-
flected, and, for the gap, transmitted waves away from the discontinuity.
Results are given for the end admittance of an open-ended line, and the end
conductance is compared with measurements. Results are also given for the
reflection coefficient magnitude and surface-wave power generation of an
open-ended line on substrates with various dielectric constants. Loss to
surface and space waves is calculated for a representative gap discontinuity.

1. INTRODUCTION

HIS PAPER DESCRIBES a “full-wave” solution of

the open-end and symmetric gap discontinuities in
microstrip line. The solution is rigorous in that space-wave
radiation and surface-wave generation from discontinuities
is explicitly included through the use of the exact Green’s
function for a grounded dielectric slab. A moment method
procedure is used whereby the electric surface current
density on the microstrip line is expanded in terms of four
different types of expansion modes: one mode represents a
traveling wave incident on the discontinuity, another mode
represents a traveling wave reflected from the discontinu-
ity, a third represents a traveling wave transmitted through
the discontinuity (gap case only), and a number of subsec-
tional (piecewise sinusoidal) modes are used in the vicinity
of the discontinuity to model the nonuniform current in
that region. The result is a physically meaningful solution
in terms of incident, reflected, and transmitted-wave ampli-
tudes, with only a small number of unknown coefficients to
solve for (typically four to five for the open-end case and
twice that for the gap case). For the open-end case, the
complex reflection coefficient can then be determined, as
well as an “end admittance,” referred to the end of the
microstrip line. For the gap, scattering parameters can be
determined. In addition, the amount of real power de-
livered to radiation and surface waves can be calculated. Tt
is assumed that only the fundamental microstrip mode is
propagating on the line away from the open end, although
higher order mode fields are accounted for in the vicinity
of the discontinuity.
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Much of the previous work on the open-circuited micro-
strip line has used quasi-static approximations, with the
results of Hammerstad and Bekkadal [1], [2] being widely
referenced. Jansen [3] has calculated length extensions for
an enclosed microstrip using a spectral-domain method.
Lewin [4] used an assumed current distribution to calcu-
late the radiated power from an open line. James and
Henderson [5], [6] developed an improved analysis using a
variational technique, including surface-wave effects, and
compared their results favorably with measurements of the
end conductance of an open-ended line on a thin, low
dielectric constant substrate. Compared with the present
solution, the results of James and Henderson appear to be
quite good for such substrates, and their relatively simple
expressions are an advantage computationally.

Likewise, the gap has also been analyzed by pre-
dominately quasistatic methods [7]-{10], the results of
which are used extensively in computer-aided design
routines. Fully electromagnetic solutions have been calcu-
lated by Jansen and Koster [11] using a spectral-domain
method, but their gap is surrounded on four sides by
perfect conductors. None of the aforementioned ap-
proaches include surface waves and radiation losses.

There were two motivations for the present work. First,
the increasing interest in monolithic and millimeter-wave
integrated circuits requires rigorous analyses to char-
acterize such microstrip discontinuities on electrically thick,
high dielectric constant substrates (such as GaAs, with
€, =12.8). Quantities such as radiation and surface waves
are more important with such substrates than with thin,
low dielectric constant substrates. Second, the present work
is an ancillary result from the solution to the problem of a
microstrip patch antenna on an elecirically thick substrate
fed by a microstrip line. This problem is also of interest in
terms of MMIC design, and may be addressed in the
future.

Section II presents the theory of the solution, which is
based on the moment method/Green’s function solutions
for printed dipole and microstrip patch antennas [12], [13].
The propagation constant for the fundamental mode of an
infinite microstrip line is also developed in terms of a
“full-wave” solution in this section, and the opportunity is
taken to dispel a few myths about propagation on micro-
strip lines. Section III presents results for terminal conduc-
tance and the A/ length extension for €, =2.32 and 12.8
substrates, and is compared with measurements and calcu-
lations from [1] and [6]. Reflection coefficient magnitudes
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Geometry of microstrip open-end and gap discontinuities.

Fig. 1.

and a radiation efficiency e, defined as the ratio of radi-
ated power to radiated plus surface-wave power [13], are
plotted versus substrate thickness for ¢, =2.55 and €,=
12.8. The fraction of incident power launched into surface
waves is seen to increase sharply with increasing substrate
thickness and /or dielectric constant. Results are also pre-
sented for radiation loss at a representative gap discontinu-
ity on ¢, =12.8.

1. THEORY

Fig. 1 shows the geometry of the open-end and gap
discontinuities in width W. The substrate is assumed in-
finitely wide in the x- and y-directions, and of thickness d,
and relative permittivity ¢,. Only *-directed electric surface
currents are assumed to flow on the microstrip line, which,
as was found in [14] and other references, is a good
approximation when thin lines (with respect to wavelength)
are used on substrates of any thickness.

A. Green’s Function for the Grounded Dielectric Slab

The canonical building block for the present solution is
the plane-wave spectral representation of the grounded
dielectric slab Green’s function, representing the %-directed
electric field at (x, y, d) due to an %-directed infinitesimal
dipole of unit strength at (xg, yy, d). This field can be
written as [12]

[+ o]
Exx(xs leO, yO) = /:[ Q(k)w k_y)eij(x~XO)
— 0
eVl dke, (1)

where

jZy (e,k3—k2)k,cosk,d + jk,(k3 —k2)sink,d
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T,=kycosk,d + jk,sink,d
T, =€,k cosk,d + jk,sink,d

k¥=¢ki—B%  Imk,<0
K2=kZ—B2,  Imk,<0
B2=kZ+k2

ko= wyngeo =27/A,

Zo=vﬂo/‘0' (3)
the zeros of the T.,T  functions

As discussed in [12], T,

constitute surface-wave poles. During the integration in (1),
which is done numerically, special care must be given to
these pole contributions, and a method for doing this is
presented in [12]. The integration in (1) is further facili--
tated by a conversion to polar coordinates, as described in
[12].

B. Propagation Constant of an Infinite Microstrip line

The solution for the open-circuited line requires the
propagation constant of an infinitely long microstrip line.
It is assumed that the electrical thickness of the substrate is
such that only the fundamental microstrip mode propa-
gates. A quasi-static value [2] could be used with reason-
able results, but the more rigorous “full-wave” solution
involves only a small fraction of the total effort for the
open-circuit problem, and so the propagation constant was
computed in this manner. The method is very similar to
[14].

Consider an infinitely long microstrip line of width W
with a traveling-wave current of the form e /%o, where k,
is the effective propagation constant to be determined.
Substituting this current into (1) and integrating over x,, y,
yields the electric field at (x, y, d) due to this line source

B~ =2 [ Q(kerky)3(k,+ k)
-elbehooF, (k) dk dk, (4)

where F, is the Fourier transform of the distribution of

current in the y-direction, which is, for now, assumed
uniform. Thus ( )
2sin(k W/2

Fy(k‘y) = ———"gy——— . (5)

Now, the above electric field must vanish at all points on

the microstrip line, since it is assumed to be a perfect

conductor. This boundary condition is enforced across the

width of the strip by integrating on y over the width. After

carrying out the k integration, the following characteristic

equation for k, results:

fioQ(ke, k,)E2(k,) dk, =0 )

k. k)=
Q( x y) 477'2k0

TT, sin k,d

)



1038

This equation can be solved relatively quickly for k&, using.

a simple search technique, such as the interval halving
method. The characteristic impedance of the uniform line
(used later) can also be derived from this solution by
computing the voltage between the strip and the ground
plane [12]. In the interest of brevity, this derivation is not
presented.

Two points of interest regarding propagation on uniform
microstrip lines can be inferred from the above solution.
First, there exists in the literature (for example, [15] and
[16]) the idea that surface-wave modes can be excited by
the fundamental mode of the uniform microstrip line. This
is false, as can be seen by noting that the fundamental
propagation constant k, (as determined numerically) is
always greater than any surface-wave pole B,,. Thus, the
-integration path of (6) never crosses a surface-wave pole,
with the result that no surface-wave power is generated by
the uniform line. Discontinuities in the line can, of course,
excite surface waves, as can higher order propagating
modes.

Second, it is sometimes stated that a uniform microstrip
line does not radiate any power into space waves. Again,
this is false, as a stationary phase evaluation of the field
above the substrate due to a uniform line will show far-zone
radiated power is generated. As a practical matter, how-
ever, this loss to radiation is much less than either conduc-
tor loss or dielectric loss.

C. Current Expansion Modes

The method of solution for both the open-circuited
microstrip line and the gap basically involves expanding
the electric surface current density on the line and for-
mulating an integral equation which can be solved by the
method of moments for the unknown expansion currents.
The choice of basis functions affects the computational
efficiency quite significantly, so a judicious choice is im-
portant. We first describe in detail the basis functions for
the open end and then describe the modifications needed
to compute the gap.

In this formulation, only %-directed currents are as-
sumed, which should be adequate for lines that are not too
wide [14]. Sinusoids, several cycles in length, are used to
represent incident and reflected traveling waves of the
fundamental microstrip mode, and subsectional (piecewise
sinusoidal) modes are used near the open end, to represent
currents that do not conform to the fundamental mode.
This approach thus differs from a recent solution to the
microstrip dipole antenna proximity fed by a microstrip
line [17], where subsectional expansion modes were used.
We also note that, in contrast to [5], the exciting wave is
not assumed to be TEM.

Thus, define an incident electric current of unit ampli-

tude as
Iinc — e—jk,x

(7)

and a reflected current as

(8)

Iref — Rejkex
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Fig. 2. Layout of expansion modes on the open-ended microstrip line.

where R is the reflection coefficient referenced to the end
of the line (x = 0). Now, because of the method of numeri-
cally integrating (1) [12], it is useful to deal with only real
expansion modes; thus, a simple transformation from ex-
ponential form to sine and cosine form is made

'™+ 1= (1- R)cosk,x— j(1+ R)sink,x, x<0.

©)

At x =0, the total electric current must be zero. The sine
term of the above current satisfies this condition, but not
the cosine terin, so the cosine term is truncated at x =
—a/2k,. Also, both terms are truncated after several
cycles. The incident and reflected current components can
then be written as

Iinc+Iref= (1—R)fy(kex+ 77/2)_](1+ R)fg(kex)
(10)
where

O>u>—mmw
otherwise )

£(wy= {50

It has been found that choosing the length of the sinusoids
to be an integer number of half wavelengths speeds the
convergence of the integrals shown in the next section.
(Physically, this means that no end charges exist on the
lines, as would be the case if the end currents were non-
zero.) Typically, the solutions are insensitive to sinusoid
length for lengths greater than three or four wavelengths.
Piecewise sinusoidal (PWS) modes are defined starting at
the end and working left. These modes can be defined as

sink,(h—|x—x,
Infn(x’y)=ln smklh |)7

for |x — x,| < h,|y|<W/2 (11)

where I, is the unknown expansion coefficient, 4 is the
half-length of the mode, and x, is the terminal location,
which is chosen as x,= —n#, for n=1,2,3,--. The cur-
rent is assumed uniform across the strip width. Fig. 2
shows how the various modes are arranged on the micro-
strip line. Typically convergence is achieved with three or
four PWS modes.

D. Integral Equation / Moment Method Solution

An integral equation for the discontinuity is written by
enforcing the boundary condition that the total % electric
field due to all the currents on the line must be zero on the
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line. Equation (1) then yields

N
[ [1 2+ I+ L L fy | Exxdodyo =0,
n=1

X0~ Jo
forx < —o0,|y|<W/2 (12)

where N is the total number of PWS modes. This equation
is enforced by multiplying by N+1 weighting or test
functions (since there are N +1 unknowns), taken here as
PWS modes as defined in (11) for =1 to N+1, and
integrating over x and y. Impedance matrix elements can
then be defined as

Z,, ff O(ky, k) F2(k,) Fom(k ) Fin (k) dic,. di,
(13)

Zpe= /f Oy ey F2(ky) Fon k) E(K,) d, di,
(14)
Zppe= f/ O (k. k) F2(k,) Fo(k,) F () dk dlk,

(15)
where F, is the Fourier transform defined in (5), and
F_,F., F., are Fourier transforms of the mode currents

Fo= [ (x) e ax (16)
x,—h

n

F = [  sink,xe/**dx (17)

- ma/k
Fxczexp[_jkxﬂ/(zke)]Fxs' (18)
This results in a matrix equation for the unknown coeffi-

cients R, I, I, - -, I;. For example, with two PWS modes,
N =2, and a 3 X3 matrix equation results

Zy Zy ~(Z.+jZy) I — 2yt Jly,

Zy Zy (254 JZy) || L |=| = Zact JZy |

Zy Zy —(Z;.+jZs) | LR =23+ JZs,
(19)

Note that the above testing procedure only enforces (12)
near the open end, where the testing modes are located.
Farther away from the end (but still much greater than
—mn/k,), (12) is automatically satisfied since then the
line looks locally as if it were infinitely long, and (6)
implies that the E_ field is near zero. In other words, Z,,
and Z,_ quickly approach zero as n increases.

E. Surface -Wave Power

With the above formulation, the reflection coefficient of
the open-circuited microstrip line can be found. Since the
termination is not an ideal electrical open circuit, the
reflection coefficient magnitude is always less than unity,
implying that some incident power is lost to radiation of
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space and surface waves. In addition, an end admittance Y
can be defined using the characteristic impedance Z, of the
line. Thus

1-R

Tz R 0

In order to quantify the separation of the total power
loss into space-wave radiation and surface-wave excitation,
an efficiency is defined as in [13]

Prad
Py+P, (21)

ras

e =

where P, is the power lost to space waves and P, is the
power lost to surface waves. This efficiency was or1gina11y
defined for printed antennas [13] and is used here in the
interest of consistency. The powers in (21) are found as
follows:

(22)

N+2 N+2
Prad Psw=Re{ Z Z IzszI*}

i=1 j=1

N+2 N+2
=Re{ > ¥ Iiz;.wzj*} (23)
i=1 y=1

where
L, for1<i<N
- j(1+R), fori=N+2

and Z;; is an impedance matrix element with indices i, j
fori, j<N,i,j=cfori,j=N+1,and i, j=sfori, j=
N +2. The Z;" elements represent only the surface-wave
contribution of the Z,, elements, as computed from the
residues of the surface-wave poles {12].

F. Gap Formulation

It is not difficult to modify the formulation for the open
end in order to compute gap-discontinuity parameters. The
configuration is shown in Fig. 1(b) with a gap G between
the input and output microstrip lines. To analyze this
discontinuity, three entire domain modes are used to repre-
sent incident, reflected, and transmitted currents. In ad-
dition to 7™ and I™ we therefore add

[¥=Te /kG=® (25)

which is then modified in a manner similar to (9) and (10)
to eliminate current discontinuities and to impose a finite
length. This results in

1o=7[ - g(k[x=61-3)- (kL - GD)] (26)
where

O<u<mmw

g(u) = { sinu,
otherwise

which is then placed, with 7™ and 7™, in (12) along with
additional piecewise sinusoidal modes (eq. (11)). Piecewise
modes will now exist at x, = — nh and at x, = nh+ G for
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Fig. 3. Comparison of calculated end conductance of an open-circuit

microstrip line compared with measurements and calculations of [5].

n=1,2,---, N. This gives a total of 2N piecewise modes.
Equation (12) has thus been modified such that R, T, and
I, are 2N +2 unknowns for which one can solve once (12)
has been tested with 2N +2 piecewise testing functions.
The remaining formulation is analogous to (13)—(19). We
note that in computing the impedance matrix elements
there are several redundancies due to reciprocity and due
to the physical symmetry of the gap configuration. Making
use of these redundancies considerably reduces computa-
tion time.

III. REsuLTS

Fig. 3 shows the terminal conductance of an open-cir-
cuited microstrip line as computed by this theory and
compared with the measurements of [5] and calculations of
[5] and {6]. The agreement of both theories and the mea-
sured data is good for substrate thickness up to about
0.1A ,, while the theories depart slightly above this value. In
contrast to this theory, James and Henderson assume a
TEM parallel-plate mode as an excitation. For thicker,
higher dielectric constant substrates, their assumption is
questionable and the two theories may diverge more read-
ily. Note the trend that, as the substrate thickness in-
creases, the termination looks less like an ideal open cir-
cuit.

Fig. 4(a) and (b) shows the reflection coefficient magni-
tude and efficiency e versus substrate thickness for ¢, =
2.55, and various microstrip line widths. The efficiency e is
practically independent of widths. Observe from Fig. 4(a)
that the reflection coefficient magnitude drops well below
unity for substrate thicknesses greater than a few hundreths
of a wavelength, and is smaller for wider strips, as would
be expected. The efficiency data of Fig. 4(b) shows that
very little of the total power loss is caused by surface-wave
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excitation when the substrate is thin, but that the surface-
wave power increases (e decreases) for thicker substrates,
with a -cusp in the data at the cutoff point of the TE,
surface-wave mode. This curve is very similar to that
obtained for printed antennas [12], [18]. Fig. 5(a) and (b)
shows corresponding data for a substrate with €, =12.8. Tt
can be seen that the reflection coefficient magnitude drops
off more rapidly with increased permittivity, and that
significantly more power is launched into surface waves,
for a given substrate thickness.

The data given in Figs. 3 and 4 allow one to determine
the amount of power loss and the amount of surface-wave
power generation of an open-circuit line. For example,
assume that 1w of power is incident on an open microstrip
line of width 0.1\, on a GaAs (e, =12.8) substrate 0.04A,
thick. Then, from Fig. 5(a) and (b), |[R| =0.96 and e = 0.53,
so there is 0.922w reflected on the line, 0.0416w delivered
to space-wave radiation, and 0.0368w delivered to surface
waves.

For MIC design, an open-circuit microstrip line is often
modeled as having a reflection coefficient with unit magni-
tude and a phase accounted for by a length extension
Al /d. When radiation loss occurs, a conductance in paral-
lel with a length extension is necessary, yielding

(27)

where Y is given in (20). Fig. 6 gives normalized end
conductance for common microstrip parameters on a Gal-

YZ,=GZ,+ jtan(k,Al)
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Fig. 6. Normalized end conductance for several common microstrip
parameters on €, =12.8.

lium Arsenide substrate. For lossless cases, the length
extension has been computed by quasi-static analysis [1],
[2], as well as other methods {3], [5]. In contrast to the end
conductance and reflection coefficient magnitude, we have
found the length extension to be much more sensitive to
the number of expansion modes, current distribution across
the microstrip line, and truncation of the integrations in
(13)—(15), especially for thin substrates. Instead of a uni-
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Fig. 8. Loss for a microstrip gap with e, =12.8, G = 0.2d, w = 2.54.

form current distribution with respect to y, we found that
a current distributed to enforce the edge condition

L (28)

V1-(2y/w)*

gave better agreement with quasistatic results in the thin
substrate limit. Fig. 7 presents calculated results for the
length extension using this theory and the quasi-static
result [2]. Good agreement occurs for narrow lines but not
for lines greater than two substrate thicknesses. Based on
this result and on results with substrates having smaller
dielectric constants, we conclude that the simple transverse
current distribution assumed in (28) will give a reasonable
length extension result for widths less than an eighth of a
wavelength in the dielectric. For precise length extension
calculations, or for wider microstrip lines, a more com-
plicated transverse current distribution is necessary. In this
paper, our calculation of length extension is primarily to
help validate the less sensitive conductance calculations.

For the gap, we have calculated total power loss due to
the combination of surface-wave and space-wave radiation
by computing

Iinc, Iref o

L=1-|R*—|T)%.

In Fig. 8, we plot this quantity versus substrate electrical
thickness for a representative configuration on Gallium
Arsenide. Loss increases, peaks, and then decreases as
frequency increases. The decrease occurs due to the fact
that a gap, intuitively considered as a series capacitance,
looks like a series short at high frequencies and thus like
less of a radiation-producing discontinuity. This loss data
is insensitive to the distribution of current in the transverse
direction. We have calculated circuit models for a gap
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using this method and found models which roughly agree
with quasi-static models but which are somewhat sensitive
to transverse current distribution. For very accurate calcu-
lation of gap and fringing capacitances, a higher degree of
modal approximation is desirable. Investigations of this
type are underway.

1V. CoNcLusION

A full-wave analysis has been presented for the problems
of microstrip open-end and gap discontinuities. For the
open end, the reflection coefficient, radiated power, and
surface-wave power have been calculated and compared
with previous calculations and measured data, when avail-
able. Plots of end conductance and length extension have
been presented for a high dielectric substrate. Loss at a gap
discontinuity has also been calculated. This type of analy-
sis should aid in the design of microwave integrated cir-
cuits, particularly for higher frequencies and high dielectric
constant substrates. Similar analysis can be used to char-
acterize more complicated microstrip discontinuities.
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