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Full-Wave Analysis of Microstrip Open-End
and Gap Discontinuities

ROBERT W. JACKSON, MEMBER, IEEE, AND DAVID M. POZAR, MEMBER, IEEE

Abstract —A solutiou is presented for the characteristics of microstrip

open-end mrd gap discontinuities on an infinite dielectric substrate. The

exact Green’s function of the grounded dielectric slab is used in a moment

method procedure, so surface waves as well as space-wave radiation are

included. The electic currents ou the line are expanded in terms of

longitudinal subsectional piecewise sinusoidal modes near the dkcontinuity,

with entire domain traveling-wave modes used to represent incident, re-

flected, and, for the gap, transmitted waves away from the discontinuity.

Results are giveu for the end admittance of an open-ended line, and the end

conductance is compared with measurements. Results are also given for the

reflection coefficient magnitude and mu-face- wave power generation of an

open-ended line on substrates with various dielectric constants. Loss to

surface and space waves is calculated for a representative gap discontinuity.

I. INTRODUCTION

T HIS PAPER DESCRIBES a “full-wave” solution of

the open-end and symmetric gap discontinuities in

microstrip line. The solution is rigorous in that space-wave

radiation and surf ace-wave generation from discontinuities

is explicitly included through the use of the exact Green’s

function for a grounded dielectric slab. A moment method

procedure is used whereby the electric surface current
density on the microstrip line is expanded in terms of four

different types of expansion modes: one mode represents a

traveling wave incident on the discontinuity, another mode

represents a traveling wave reflected from the discontinu-

ity, a third represents a traveling wave transmitted through

the discontinuity (gap case only), and a number of subsec-

tional (piecewise sinusoidal) modes are used in the vicinity

of the discontinuity to model the nonuniform current in

that region. The result is a physically meaningful solution

in terms of incident, reflected, and transmitted-wave ampli-

tudes, with only a small number of unknown coefficients to

solve for (typically four to five for the open-end case and

twice that for the gap case). For the open-end case, the

complex reflection coefficient can then be determined, as

well as an “end admittance,” referred to the end of the

microstrip line. For the gap, scattering parameters can be

determined. In addition, the amount of real power de-

livered to radiation and surface waves can be calculated. It

is assumed that only the fundamental microstrip mode is

propagating on the line away from the open end, although
higher order mode fields are accounted for in the vicinity

of the discontinuity.
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Much of the previous work on the open-circuited micro-

strip line has used quasi-static approximations, with the

results of Hammerstad and Bekkadal [1], [2] being widely

referenced. Jansen [3] has calculated length extensions for

an enclosed microstrip using a spectral-domain method.

Lewin [4] used an assumed current distribution to calcu-

late the radiated power from an open line. James and

Henderson [5], [6] developed an improved analysis using a

variational technique, including surface-wave effects, and

compared their results favorably with measurements of the

end conductance of an open-ended line on a thin, low

dielectric constant substrate. Compared with the present

solution, the results of James and Henderson appear to be

quite good for such substrates, and their relatively simple

expressions are an advantage computationally.

Likewise, the gap has also been analyzed by pre-

dominately quasistatic methods [7]-[10], the results of

which are used extensively in computer-aided design

routines. Fully electromagnetic solutions have been calcu-

lated by Jansen and Koster [11] using a spectral-domain

method, but their gap is surrounded on four sides by

perfect conductors. None of the aforementioned ap-

proaches include surface waves and radiation losses.

There were two motivations for the present work. First,

the increasing interest in monolithic and millimeter-wave

integrated circuits requires rigorous analyses to char-

acterize such microstnp discontinuities on electrically thick,

high dielectric constant substrates (such as GaAs, with

c, = 12.8). Quantities such as radiation and surface waves

are more important with such substrates than with thin,

low dielectric constant substrates. Second, the present work

is an ancillary result from the solution to the problem of a

microstrip patch antenna on an electrically thick substrate

fed by a microstrip line. This problem is also of interest in

terms of MMIC design, and may be addressed in the

future.

Section II presents the theory of the solution, which is

based on the moment method/Green’s function solutions

for printed dipole and microstrip patch antennas [12], [13].

The propagation constant for the fundamental mode of an

infinite microstrip line is also developed in terms of a

“full-wave” solution in this section, and the opportunity is

taken to dispel a few myths about propagation on micro-

strip lines. Section III presents results for terminal conduc-

tance and the Al length extension for c.= 2.32 and 12.8

substrates, and is compared with measurements and calcu-

lations from [1] and [6]. Reflection coefficient magnitudes
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Fig. 1. Geometry of microstrip open-end and gap discontinuities.

and a radiation efficiency e, defined as the ratio of radi-

ated power to radiated plus surface-wave power [13], are

plotted versus substrate thickness for 6,=2.55 and c.=

12.8. The fraction of incident power launched into surface

waves is seen to increase sharply with increasing substrate

thickness and/or dielectric constant. Results are also pre-

sented for radiation loss at a representative gap discontinu-

ity on c,= 12.8.

II. THEORY

Fig. 1 shows the geometry of the open-end and gap

discontinuities in width W. The substrate is assumed in-

finitely wide in the x- and y-directions, and of thickness d,

and relative permittivity c,. Only ~-directed electric surface

currents are assumed to flow on the microstrip line, which,

as was found in [14] and other references, is a good

approximation when thin lines (with respect to wavelength)

are used on substrates of any thickness.

A. Green’s Function for the Grounded Dielectric Slab

The canonical building block for the present solution is

the plane-wave spectral representation of the grounded

dielectric slab Green’s function, representing the i-directed

electric field at (x, y, d) due to an 2-directed infinitesimal

dipole of unit strength at (xO, YO,d ). Tfis field can be
written as [12]

Exx(x, ylxo, yo)=– ~ Q(~x,ky)e~.(x-xo)
—m

. eJ~t’-J’O) dkYdkY (1)

where

T,= kl cos kld + jkz sin kld

Tn = crkz cos kld + jkl sin kld

k; =c,k; –/32, Imkl<O

k;=k;–~z, Imk2<0

&=k:+k2
Y

Zo={z. (3)

As discussed in [12], the zeros of the T=, T~ functions

constitute surface-wave poles. During the integration in (l),

which is done numerically, special care must be given to

these pole contributions, and a method for doing this is

presented in [12]. The integration in (1) is further facili-

tated by a conversion to polar coordinates, as described in

[12].

B. Propagation Constant ‘of an Infinite Microstrip line

The solution for the open-circuited line requires the

propagation constant of an infinitely long rnicrostrip line.

It is assumed that the electrical thickness of the substrate is

such that only the fundamental microstrip mode propa-

gates. A quasi-static value [2] could be used with reason-

able results, but the more rigorous “full-wave” solution

invokes only a small fraction of the total effort for the

open-circuit problem, artd so the propagation constant was

computed in this manner. The method is very similar to

[14].

Consider an infinitely long microstrip line of width W

with a traveling-wave current of the form e ‘~kexo, where k=

is the effective propagation constant to be determined.

Substituting this current into (1) and integrating over Xo, YO

yields the electric field at (x, y, d) due to this line source

E;.= -2~ jjQ(kky)~(L+k)
—03

oe~kxxe~k~~~y(k,) dkX dkY (4)

where FY is the Fourier transform of the distribution of

current m the y-direction, which is, for now, assumed

uniform. Thus
2 sin (kYW/2)

Fy(ky) = k “
Y

(5)

Now, the above electric field must vanish at all points on

the fnicrostrip line, since it is assumed to be a perfect

conductor. This boundary condition is enforced across the

width of the strip by integrating on y over the width. After

carrying out the kX integration, the following characteristic

equation for k. results:

/mQ(ke,k.,)32(k.v) dk,=o
—cc

(6)

jzo (crk~ – k~)kzcoskld+ jkl(k~ – k;)sinkld .
Q(kx2 k,) = ~mzko

sm kld
T,T~

(2)
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This equation can be solved relatively quickly for k, using

a simple search technique, such as the interval halving

method. The characteristic impedance of the uniform line

(used later) can also be derived from this solution by

computing the voltage between the strip and the ground

plane [12]. In the interest of brevity, this derivation is not

presented.

Two points of interest regarding propagation on uniform

microstrip lines can be inferred from the above solution.

First, there exists in the literature (for example, [15] and

[16]) the idea that surface-wave modes can be excited by

the fundamental mode of the uniform microstrip line. This

is false, as can be seen by noting that the fundamental

propagation constant k, (as determined numerically) is

always greater than any surface-wave pole /3~~. Thus, the

-integration path of (6) never crosses a surface-wave pole,

with the result that no surface-wave power is generated by

the uniform line. Discontinuities in the line can, of course,

excite surface waves, as can higher order propagating

modes.

Second, it is sometimes stated that a uniform microstrip

line does not radiate any power into space waves. Again,

this is false, as a stationary phase evaluation of the field

above the substrate due to a uniform line will show far-zone

radiated power is generated. As a practical matter, how-

ever, this loss to radiation is much less than either conduc-

tor loss or dielectric loss.

C. Current Expansion Modes

The method of solution for both the open-circuited

microstrip line and the gap basically involves expanding

the electric surface current density on the line and for-

mulating an integral equation which can be solved by the

method of moments for the unknown expansion currents.

The choice of basis functions affects the computational

efficiency quite significantly, so a judicious choice is im-

portant. We first describe in detail the basis functions for

the open end and then describe the modifications needed

to compute the gap.

In this formulation, only i-directed currents are as-

sumed, which should be adequate for lines that are not too

wide [14]. Sinusoids, several cycles in length, are used to

represent incident and reflected traveling waves of the

fundamental microstrip mode, and subsectional (piecewise

sinusoidal) modes are used near the open end, to represent

currents that do not conform to the fundamental mode.
This approach thus differs from a recent solution to the

microstrip dipole antenna proximity fed by a microstrip

line [17], where subsectional expansion modes were used.

We also note that, in contrast to [5], the exciting wave is

not assumed to be TEM.

Thus, define an incident electric current of unit ampli-

tude as

linc = e–Jkex (7)

and a reflected current as

lref = – ReJ%x (8)

sin k~x

J - 13%11

>X

t
kOS ke X

Fig. 2. Layout of expansion modes on the open-ended microstnp line.

where R is the reflection coefficient referenced to the end

of the line (x = O). Now, because of the method of numeri-

cally integrating (1) [12], it is useful to deal with only real

expansion modes; thus, a simple transformation from ex-

ponential form to sine and cosine form is made

1’”’ +1’”= (l- R)cosk=x -j(l+R)sinkex, x<O.

(9)

At x = O, the total electric current must be zero. The sine

term of the above current satisfies this condition, but not

the cosine terin, so the cosine term is truncated at x =

— ~/2ke. Also, both terms are truncated after several

cycles. The incident and reflected current components can

then be written as

Iinc+Iref= (l- R) f$(k..x +~/2)-j(l+ R) f,(kex)

(lo)

where

j-$(u) =(y? O>u>–m7r
otherwise

It has been found that choosing the length of the sinusoids

to be an integer number of half wavelengths speeds the

convergence of the integrals shown in the next section.

(Physically, this means that no end charges exist on the

lines, as would be the case if the end currents were non-

zero.) Typically, the solutions are insensitive to sinusoid

length for lengths greater than three or four wavelengths.

Piecewise sinusoidal (PWS) modes are defined starting at

the end and working left. These modes can be defined as

~n.fn(x>Y) = In
sink, (h–lx–x.1)

sink,h ‘

- for lx – x,1 <h, Iyl < W/2 (11)

where I. is the unknown expansion coefficient, h is the

half-length of the mode, and x. is the terminal location,

which is chosen as X. = – nh, for n =1,2,3, - --- The cur-

rent is assumed uniform across the strip width. Fig. 2

shows how the various modes are arranged on the micro-

strip line. Typicall~ convergence is achieved with three or

four PWS modes.

D. Integral Equation /h40ment Method Solution

An integral equation for the discontinuity is written by

enforcing the boundary condition that the total 2 electric

field due to all the currents on the line must be zero on the
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line. Equation (1) then yields

J/[
1

I’nc + I’ef + ~ Infn EXXdxOdyO = O,

~o Yo *=1

forx <- co, Iyl < W/2 (12)

where N is the total number of PWS modes. This equation

is enforced by multiplying by N + 1 weighting or test

functions (since there are N+ 1 unknowns), taken here as

PWS modes as defined in (11) for n =1 to N +1, and

integrating over x and y. Impedance matrix elements can

then be defined as

Znn = ~~ Q(~x, ~y)~;(~.,)~xm(~ x)~x:(~x) dkxdky
—co

(13)

Znc= j Q(kx>~y)~;(~y)~xm(~.)~.:(kx)dkxdky
—w

(14)

zm= j Q(IL ~y)~;(~y)~.w(kx)~x:(kx) dk. dk,
—co

(15)

where Fy is the Fourier transform defined in (5), and

FXn, FXC, FX. are Fourier transforms of the mode currents

FXn = ~_~hf.(x)ejkxx dx
“

/
F=”

Xs
sin kexejk’x dx

– mr/k

FXC = exp [ – jkxfi/(2ke)] FX,.

(16)

(17)

(18)

space and surface waves. In addition, an end admittance Y

can be defined using the characteristic impedance 20 of the

line. Thus

1–R

‘= ZO(l+R) “
(20)

In order to quantify the separation of the total power

loss into space-wave radiation and surface-wave excitation,

an efficiency is defined as in [13]

P rad

e = Pra~ + P,w
(21)

where Pr~~ is the power lost to space waves and P,W is the

power lost to surface waves. This efficiency was originally

defined for printed antennas [13] and is used here in the

interest of consistency. The powers in (21) are found as

follows :

{

N+2 N+2

P,,d + P,W = Re ~ ~ IiZ,lI1*

)

(22)

iel j=l

where

[

I forl<i<N
1,= (;–R), fori=N+l (24)

\-j(~+R), fori=N+2

and Zi~ is an impedance matrix element with indices i, j

fori, j< N,i, j=cfori, j= N+l, and i,j=sfori, j=

N +2. The 2:,” elements represent only the surface-wave

contribution of the Z,, elements, as computed from the

residues of the surface-wave poles [12].

This results in a matrix equation for the-unknown COeffi- F, Gap Formulation

cients R, 11, 12,”” “, IN. For example, with two PWS modes,

N = 2, and a 3 X 3 matrix equation results
It is not difficult to modify the formulation for the open

[ i$%llkl=[%%l

end in order to compute gap-discontinuity parameters. The

211 212 configuration is shown in Fig. l(b) with a gap G between

221 222 the input and output microstrip lines. To analyze this

231 Z32
discontinuity, three entire domain modes are used to repre-

sent incident, reflected, and transmitted currents. In ad-
(19) dition to linc and I ‘ef, we therefore add

Note that the above testing procedure only enforces (12) It, = Te-jk,(x-G) (25)
near the open end, where the testing modes are located.

Farther away from the end (but still much greater than
which is then modified in a manner similar to (9) and (10)

— m n/k C), (12) is automatically satisfied since then the to eliminate current discontinuities and to impose a finite

line looks locallv as if it were infinitely long,and (6) length.Thisresultsin
implies that the EX field is near zero. In other words, Z.C

and Z.$ quickly approach zero as n increases.
~tr=T~-g(k,[x-G] -~)-jg(k,[x-Gl)] (26)

E. Su~face - Wave Power
where

With the above formulation, the reflection coefficient of
O<u<m~~(u)={$:~>

the open-circuited rnicrostrip line can be found. Since the
otherwise

termination is not an ideal electrical open circuit, the which is then placed, with Ii”’ and 1 “f, in (12) along with

reflection coefficient magnitude is always less than unity, additional piecewise sinusoidal modes (eq. (11)). PieceWise

implying that some incident power is lost to radiation of modes will now exist at x. = – nh and at x. = nh + G for
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Fig. 3. Comparison of calculated end conductance of an open-circuit
microstrip line compared with measurements and calculations of [5].

~=l,z,... , N. This gives a total of 2N piecewise modes.

Equation (12) has thus been modified such that R, T, and

I. are 2N + 2 unknowns for which one can solve once (12)

has been tested with 2N + 2 piecewise testing functions.

The remaining formulation is analogous to (13)-(19). We

note that in computing the impedance matrix elements

there are several redundancies due to reciprocity and due

to the physical symmetry of the gap configuration. Making

use of these redundancies considerably reduces computa-

tion time.

III. RESULTS

Fig. 3 shows the terminal conductance of an open-cir-

cuited microstrip line as computed by this theory and

compared with the measurements of [5] and calculations of

[5] and [6]. The agreement of both theories and the mea-

sured data is good for substrate thickness up to about

O.lA ~, while the theories depart slightly above this value. In

contrast to this theory, James and Henderson assume a

TEM parallel-plate mode as an excitation. For thicker,

higher dielectric constant substrates, their assumption is

questionable and the two theories may diverge more read-

ily. Note the trend that, as the substrate thickness in-

creases, the termination looks less like an ideal open cir-

cuit.

Fig. 4(a) and (b) shows the reflection coefficient magni-

tude and efficiency e versus substrate thickness for c,=

2.55, and various rnicrostrip line widths. The efficiency e is

practically independent of widths. Observe from Fig. 4(a)

that the reflection coefficient magnitude drops well below

unity for substrate thicknesses greater than a few hundreths

of a wavelength, and is smaller for wider strips, as would

be expected. The efficiency data of Fig. 4(b) shows that

very little of the total power loss is caused by surface-wave

I —-

6

~b

,.W=O 02L.
. W=o l!,.

,6

IRI

,4

.2-
I

.oL——_—_—0 .05 .10
d/b “15

.20 .:

(a)

.0 ! 1
0 .05 .10 .15 .20 ,:

.mo

(b)

)

)

Fig, 4. (a) Reflection coefficient magnitude and (b) efficiency for an
open-circuit microstnp line on an <, = 2.55 substrate.

excitation when the substrate is thin, but that the surface-

wave power increases (e decreases) for thicker substrates,

with a cusp in the data at the cutoff point of the TEI

surface-wave mode. This curve is very similar to that

obtained for printed antennas [12], [18]. Fig. 5(a) and (b)

shows corresponding data for a substrate with c,= 12.8. It

can be seen that the reflection coefficient magnitude drops

off more rapidly with increased permittivity, and that

significantly more power is launched into surface waves,

for a given substrate thickness.

The data given in Figs. 3 and 4 allow one to determine

the amount of power loss and the amount of surface-wave

power generation of an open-circuit line. For example,

assume that lW of power is incident on an open microstrip

line of width O.lAO on a GaAs (t, = 12.8) substrate 0.04A0

thick. Then, from Fig. 5(a) and (b), IR I = 0.96 and e = 0.53,

so there is O.922W refleeted on the line, 0.0416w delivered

to space-wave radiation, and 0.0368w delivered to surface

waves.

For MIC design, an open-circuit microstrip line is often

modeled as having a reflection coefficient with unit magni-

tude and a phase accounted for by a length extension

Al/d. -When radiation loss occurs, a conductance in paral-

lel with a length extension is necessary, yielding

YZO = GZO + jtan(k@Al) (27)

where Y is given in (20). Fig. 6 gives normalized end

conductance for common microstrip parameters on a Gal-
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Fig. 5. (a) Reflection coefficient magnitude and (b) efficiency
open-circuit microstnp line on an c, = 12.8 substrate.
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Fig. 6. Normalized end conductance for severaf common tnicrostnp
parameters on c, = 12.8.

lium Arsenide substrate. For lossless cases, the length

extension has been computed by quasi-static analysis [1],
[2], as well as other methods [3], [5]. In contrast to the end

conductance and reflection coefficient magnitude, we have

found the length extension to be much more sensitive to

the number of expansion modes, current distribution across

the rnicrostrip line, and truncation of the integrations in

(13)-(15), especially for thin substrates. Instead of a uni-

~/”-
,..,.,,/,

.3 ,.-

~
,/,

d
/,

/,

.,’
.2

/ ---OUASI-STATIC[21

.i i.
w/d

Fig. 7. Calculated length extension of an open-circuit microstrip line
compared with quasi-state theory [2] on a substrate with c,= 12.8,
d = 0.02A0.

‘i.06

14LL
01 .02 03

dh.
04 .05 ,06

Fig. 8. Loss for a microstrip gap with c, = 12.8, G = 0.2d, w = 2.5d.

form current distribution with respect to y, we found that

a current distributed to enforce the edge condition

*’”C’’’””& (28)

gave better agreement with quasistatic results in the thin

substrate limit. Fig. 7 presents calculated results for the

length extension using this theory and the quasi-static

result [2]. Good agreement occurs for narrow lines but not

for lines greater than two substrate thicknesses. Based on

this result and on results with substrates having smaller

dielectric constants, we conclude that the simple transverse

current distribution assumed in (28) will give a reasonable

length extension result for widths less than an eighth of a

wavelength in the dielectric. For precise length extension

calculations, or for wider microstrip lines, a more com-

plicated transverse current distribution is necessary. In this

paper, our calculation of length extension is primarily to

help validate the less sensitive conductance calculations.

For the gap, we have calculated total power loss due to

the combination of surface-wave and space-wave radiation

by computing

L=l– IR12– IT12.

In Fig. 8, we plot this quantity versus substrate electrical

thickness for a representative configuration on Gallium

Arsenide. Loss increases, peaks, and then decreases as
frequency increases. The decrease occurs due to the fact

that a gap, intuitively considered as a series capacitance,

looks like, a series short at high frequencies and thus like

less of a radiation-producing discontinuity. This loss data

is insensitive to the distribution of current in the transverse

direction. We have calculated circuit models for a gap
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using this method and found models which roughly agree

with quasi-static models but which are somewhat sensitive

to transverse current distribution. For very accurate calcu-

lation of gap and fringing capacitances, a higher degree of

modal approximation is desirable. Investigations of this

type are underway.

IV. CONCLUSION

A full-wave analysis has been presented for the problems

of microstrip open-end and gap discontinuities. For the

open end, the reflection coefficient, radiated power, and

surface-wave power have been calculated and compared

with previous calculations and measured data, when avail-

able. Plots of end conductance and length extension have

been presented for a high dielectric substrate. Loss at a gap

discontinuity has also been calculated. This type of analy-

sis should aid in the design of microwave integrated cir-

cuits, particularly for higher frequencies and high dielectric

constant substrates. Similar analysis can be used to char-

acterize more complicated microstrip discontinuities.
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